Surname	Other na	mes		
Edexcel International GCSE	Centre Number	Candidate Number		
Further Pure Mathematics Paper 2				
Tuesday 22 January 2013 Time: 2 hours	– Afternoon	Paper Reference 4PM0/02		

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 100.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.

Turn over ▶

PEARSON

Answer all TEN questions.

Write your answers in the spaces provided.

You must write down all stages in your working.

1

Diagram **NOT** accurately drawn

Figure 1

Figure 1 shows the sector, AOB of a circle with centre O and radius 8 cm. A circle of radius 2 cm touches the lines OA and OB and the arc AB. Angle AOB is 2θ radians,

$$0<\theta<\frac{\pi}{4}.$$

(a) Find, to 4 significant figures, the value of θ

(3)

(b) Find, to 3 significant figures, the area of the region shaded in Figure 1.

	1	9	. >	
- //		.2		D.
- 8		٦		в

Question 1 continued	
	(Total for Question 1 is 6 marks)

2	Using the identities $\sin (A + B) = \sin A \cos B + \cos A \sin B$ $\cos (A + B) = \cos A \cos B - \sin A \sin B$ $\tan A = \frac{\sin A}{\cos A}$	
	(a) show that $\tan (A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$	(3)
	(b) Hence show that	
	(i) $\tan 105^\circ = \frac{1+\sqrt{3}}{1-\sqrt{3}}$ (ii) $\tan 15^\circ = \frac{\sqrt{3}-1}{1+\sqrt{3}}$	(4)

(Total for Question 2 is 7 marks)	

3	(a) Expand $(1 + 3x^2)^{-\frac{1}{4}}$ in ascending powers of x up to and including the term in x^6 , giving each coefficient as a fraction in its lowest terms.	
		(3)
	(b) Find the range of values of x for which your expansion is valid.	(1)
	$f(x) = \frac{3 + kx^2}{(1 + 3x^2)^{\frac{1}{4}}} \qquad k \in \mathbb{R}^+$	
	(c) Obtain a series expansion for $f(x)$ in ascending powers of x up to and including the term in x^6 .	
		(3)
	Given that the coefficient of x^4 in the series expansion of $f(x)$ is zero	
	(d) find the exact value of k .	
		(2)

Question 3 continued	

uestion 3 continued	
	(Total for Question 3 is 9 marks)

4 Differentiate with respect to <i>x</i>	
(a) $3x \sin 5x$	(3)
(b) $\frac{e^{2x}}{4-3x^2}$	
$\mathbf{T} = S\lambda$	(3)
(Total for Qu	uestion 4 is 6 marks)

5

 $\cos (A + B) = \cos A \cos B - \sin A \sin B$

(a) Use the above identity to show that $2 \sin^2 A = 1 - \cos 2A$

(3)

(b) Hence find the value of k such that $\sin^2 2A = k(1 - \cos 4A)$

(1)

Figure 2

Figure 2 shows part of the curve with equation $y = 3 \sin 2x$. The region R, bounded by the curve, the positive x-axis and the line $x = \frac{\pi}{6}$, is rotated through 360° about the x-axis.

(c) Use calculus to find, to 3 significant figures, the volume of the solid generated.

(6)

Question 5 continued	

Question 5 continued	

Question 5 continued	
	(Total for Question 5 is 10 marks)

6	A solid paperweight in the shape of a cuboid has volume 15 cm ³ . The paperweight has a rectangular base of length $5x$ cm and width x cm and a height of h cm. The total surface area of the paperweight is A cm ² .	
	(a) Show that $A = 10x^2 + \frac{36}{x}$	(3)
	(b) Find, to 3 significant figures, the value of x for which A is a minimum, justifying that this value of x gives a minimum value of A .	
	(c) Find, to 3 significant figures, the minimum value of <i>A</i> .	(6)
	(c) Find, to 3 significant figures, the minimum value of A.	(2)

Question 6 continued		

Question 6 continued	
	(Total for Question 6 is 11 marks)

7	The line l passes through the points with coordinates $(1, 6)$ and $(3, 2)$.	
	(a) Show that an equation of <i>l</i> is $y + 2x = 8$	
		(3)
	The curve C has equation $xy = 8$	
	(b) Show that <i>l</i> is a tangent to <i>C</i> .	
		(3)
	Given that l is the tangent to C at the point A ,	
	(a) Con 14h a con 15m 4 a c C A	
	(c) find the coordinates of A .	
		(2)
	(d) Find an acception with integer coefficients of the named to Cat A	
	(d) Find an equation, with integer coefficients, of the normal to C at A .	
		(3)
		•••••

Question 7 continued	

Question 7 continued		

uestion 7 continued	
	(Total for Question 7 is 11 marks)

Figure 3

In Figure 3, $\overrightarrow{OA} = \mathbf{a}$, $\overrightarrow{OB} = \mathbf{b}$ and M is the mid-point of AB.

The point P is on OA such that OP:PA = 3:2

The point X lies on OB produced.

- (a) Find, as simplified expressions in terms of **a** and **b**,
 - $(i) \overrightarrow{AB}$
- (ii) \overrightarrow{OM}
- (iii) \overrightarrow{PM}

(6)

Given that P, M and X are collinear

(b) find, in terms of **b**, \overrightarrow{OX}

(4)

(c) Find the ratio (area $\triangle OAM$): (area $\triangle OAX$).

(3)

Question 8 continued		

Question 8 continued	

	Question 8 continued	
(Total for Question 8 is 13 marks)		

9 The third and fifth terms of a geometric series S are 48 and 768 respectively. Find (a) the two possible values of the common ratio of S , (b) the first term of S . (1) Given that the sum of the first 5 terms of S is 615 (c) find the sum of the first 9 terms of S . (4) Another geometric series T has the same first term as S . The common ratio of T is $\frac{1}{r}$ where r is one of the values obtained in part (a). The n th term of T is t_n Given that $t_n > t_n$ (d) find the common ratio of T . (1) The sum of the first n terms of T is T_n (c) Writing down all the numbers on your calculator display, find T_0 The sum to infinity of T is T_n Given that $T_n - T_n > 0.002$ (f) find the greatest value of n . (5)			
(b) the first term of S . (1) Given that the sum of the first 5 terms of S is 615 (c) find the sum of the first 9 terms of S . (4) Another geometric series T has the same first term as S . The common ratio of T is $\frac{1}{r}$ where r is one of the values obtained in part (a). The n th term of T is t_n Given that $t_2 > t_3$ (d) find the common ratio of T . (1) The sum of the first n terms of T is T_n (e) Writing down all the numbers on your calculator display, find T_9 The sum to infinity of T is T_∞ Given that $T_\infty - T_n > 0.002$ (f) find the greatest value of n .	9	The third and fifth terms of a geometric series S are 48 and 768 respectively. Find	
Given that the sum of the first 5 terms of S is 615 (c) find the sum of the first 9 terms of S . Another geometric series T has the same first term as S . The common ratio of T is $\frac{1}{r}$ where r is one of the values obtained in part (a). The n th term of T is t_n Given that $t_2 > t_3$ (d) find the common ratio of T . The sum of the first n terms of T is T_n (e) Writing down all the numbers on your calculator display, find T_9 The sum to infinity of T is T_∞ Given that $T_\infty - T_n > 0.002$ (f) find the greatest value of n .		(a) the two possible values of the common ratio of S ,	(3)
Given that the sum of the first 5 terms of S is 615 (c) find the sum of the first 9 terms of S . (4) Another geometric series T has the same first term as S . The common ratio of T is $\frac{1}{r}$ where r is one of the values obtained in part (a). The n th term of T is t_n Given that $t_2 > t_3$ (d) find the common ratio of T . (1) The sum of the first n terms of T is T_n (e) Writing down all the numbers on your calculator display, find T_9 The sum to infinity of T is T_{∞} Given that $T_{\infty} - T_n > 0.002$ (f) find the greatest value of n .		(b) the first term of S.	(1)
Another geometric series T has the same first term as S . The common ratio of T is $\frac{1}{r}$ where r is one of the values obtained in part (a). The n th term of T is t_n Given that $t_2 > t_3$ (d) find the common ratio of T . (1) The sum of the first n terms of T is T_n (e) Writing down all the numbers on your calculator display, find T_9 (2) The sum to infinity of T is T_{∞} Given that $T_{\infty} - T_n > 0.002$ (f) find the greatest value of n .		Given that the sum of the first 5 terms of <i>S</i> is 615	(1)
Another geometric series T has the same first term as S . The common ratio of T is $\frac{1}{r}$ where r is one of the values obtained in part (a). The n th term of T is t_n Given that $t_2 > t_3$ (d) find the common ratio of T . The sum of the first n terms of T is T_n (e) Writing down all the numbers on your calculator display, find T_9 (2) The sum to infinity of T is T_{∞} Given that $T_{\infty} - T_n > 0.002$ (f) find the greatest value of n .		(c) find the sum of the first 9 terms of <i>S</i> .	
where r is one of the values obtained in part (a). The n th term of T is t_n Given that $t_2 > t_3$ (d) find the common ratio of T . (1) The sum of the first n terms of T is T_n (e) Writing down all the numbers on your calculator display, find T_9 (2) The sum to infinity of T is T_{∞} Given that $T_{\infty} - T_n > 0.002$ (f) find the greatest value of n .		Another geometric series T has the same first term as S. The common ratio of T is $\frac{1}{T}$	(4)
Given that $t_2 > t_3$ (d) find the common ratio of T . (1) The sum of the first n terms of T is T_n (e) Writing down all the numbers on your calculator display, find T_9 The sum to infinity of T is T_{∞} Given that $T_{\infty} - T_n > 0.002$ (f) find the greatest value of n .		<i>I</i>	
The sum of the first n terms of T is T_n (e) Writing down all the numbers on your calculator display, find T_9 The sum to infinity of T is T_{∞} Given that $T_{\infty} - T_n > 0.002$ (f) find the greatest value of n .			
The sum of the first n terms of T is T_n (e) Writing down all the numbers on your calculator display, find T_9 The sum to infinity of T is T_{∞} Given that $T_{\infty} - T_n > 0.002$ (f) find the greatest value of n .		(d) find the common ratio of T .	(1)
(e) Writing down all the numbers on your calculator display, find T_9 The sum to infinity of T is T_{∞} Given that $T_{\infty} - T_n > 0.002$ (f) find the greatest value of n .		The sum of the first n terms of T is T	(1)
The sum to infinity of T is T_{∞} Given that $T_{\infty} - T_n > 0.002$ (f) find the greatest value of n .			
Given that $T_{\infty} - T_n > 0.002$ (f) find the greatest value of n .			(2)
(f) find the greatest value of n .			
		Given that $T_{\infty} - T_n > 0.002$	
		(f) find the greatest value of n .	(5)
			(-)

Question 9 continued	

Question 9 continued		

Question 9 continued	
	(Total for Question 9 is 16 marks)

10	Solve the equations	
	(a) $\log_x 1024 = 5$	(2)
	(b) $\log_5 (6y + 11) = 3$	(3)
	(c) $2\log_3 t + \log_t 9 = 5$	(6)

Question 10 continued	

Question 10 continued		
	(Total for Question 10 is 11 marks)	
	TOTAL FOR PAPER IS 100 MARKS	